
Performance Comparison of a Set of Periodic

and Non-Periodic Tridiagonal Solvers

on SP2 and Paragon Parallel Computers

Xian-He Sun� Stuti Moitra

Department of Computer Science Scienti�c Applications Branch

Louisiana State University NASA Langley Research Center

Baton Rouge, LA 70803-4020 Hampton, VA 23681-0001

Abstract

Various tridiagonal solvers have been proposed in recent years for di�erent par-
allel platforms. In this paper, the performance of three tridiagonal solvers, namely,
the parallel partition LU algorithm, the parallel diagonal dominant algorithm, and the
reduced diagonal dominant algorithm, is studied. These algorithms are designed for
distributed-memory machines and are tested on an Intel Paragon and an IBM SP2
machines. Measured results are reported in terms of execution time and speedup. An-
alytical study are conducted for di�erent communication topologies and for di�erent
tridiagonal systems. The measured results match the analytical results closely. In ad-
dition to address implementation issues, performance considerations such as problem
sizes and models of speedup are also discussed.

�This work was supported in part by the NationalAeronautics and Space Administration under NASA contract
NAS1-1672 and byLouisiana Education Quality Support Fund.

1 Introduction

Distributed-memory parallel computers dominate today's parallel computing arena. These ma-

chines, such as the Kendall Square KSR-1, Intel Paragon, TMC CM-5, and the recently announced

IBM SP2 and Cray T3D concurrent systems, have successfully delivered high performance com-

puting power for solving certain of the so-called \grand-challenge" problems [1]. Despite initial

success, parallel machines have not been widely accepted in production engineering environment.

On a parallel computing system, a task has to be partitioned and distributed appropriately among

processors to reduce communication cost and to achieve load balance. More importantly, even with

a careful partitioning and mapping, the performance of an algorithm might be still unsatisfactory,

since conventional sequential algorithms may be serial in nature and may not be implemented

e�ciently on parallel machines. In many cases, new algorithms must be introduced to increase

parallelism and to take advantage of the computing power of the scalable parallel hardware.

Solving tridiagonal systems is a basic computational kernel of many scienti�c applications.

Tridiagonal systems appear in multigrid methods, Alternating Direction Implicit (ADI) method,

wavelet collocation method, and in line-SOR preconditioners for conjugate gradient methods [2].

In addition to solving PDE's, tridiagonal systems also arise in digital signal processing, image

processing, stationary time series analysis, and in spline curve �tting. Because its importance,

intensive research has been carried out on the development of e�cient parallel tridiagonal solvers.

Many algorithms have been proposed [3, 4, 5]. In general, parallel tridiagonal solvers require global

communications which makes them ine�cient on distributed-memory architectures. The algorithm

given by Lawrie and Sameh [6], the algorithm given by Wang [7], and the Parallel Partition LU

(PPT) algorithm, the Parallel Diagonal Dominant (PDD) algorithm proposed by Sun, Zhang, and

Ni [3] are designed for medium and coarse grain computing, i.e. for the case of p < n or p << n,

where p is the number of processors available and n is the order of the linear system. They are

substructuring methods. These algorithms partition the original problem into sub-problems. The

sub-problems are solved in parallel, and then the solutions of the sub-problems are combined to

obtain the �nal solution.

Among the above substructuring methods, the PPT algorithm has a similar computation and

communication complexity as Wang's algorithm and has a similar substructure as the algorithm of

Lawrie and Sameh. The PDD algorithm, designed for strictly diagonally dominant problems, is the

most e�cient, when it is applicable. Recently, Sun has extended the PDD algorithm, and the PPT

algorithm, for solving periodic systems and proposed a variation of the PDD algorithm, the Reduced

PDD algorithm [2]. The Reduced PDD algorithm maintains the minimum communication provided

by the PDD algorithm but has a reduced operation count. It has a smaller operation count than

the conventional sequential algorithm for many applications. While sequential algorithm requires

more operations for solving periodic systems, the three parallel algorithms basically have the same

2

operation count for solving periodic and non-periodic systems. In this paper, the performance of

the PPT algorithm, the PDD algorithm, and the Reduced PDD algorithm are carefully examined.

Operation counts are presented for comparison with best sequential algorithms for both periodic and

non-periodic systems. Communication complexities are studied for three di�erent communication

topologies: 2-D torus, multi-stage Omega network, and hypercube. Implementation is conducted

on two distributed-memory computers: the Intel Paragon and the IBM SP2, for solving both

periodic and non-periodic systems. Speedup over the best sequential algorithm is compared with

speedup over the uniprocessor processing of the parallel program. The in
uence of problem size

on performance and the usefulness of di�erent models of speedup are also discussed. Experimental

results match analytical results well. Experimental and theoretical results show that the PDD and

the Reduced PDD algorithm are e�cient and scalable. They are good candidates for distributed-

memory machines.

This paper is organized as follows. Section 2 introduces the three parallel algorithms. Section

3 provides analytical comparisons of the three algorithms in terms of computation and communi-

cation, for solving periodic and non-periodic systems, and for solving single systems and systems

with multiple right-hand-sides. Related sequential algorithms are also discussed. Section 4 presents

experimental results on an Intel Paragon and an IBM SP2 multicomputer. Performance comparison

and considerations of the three algorithms on the two parallel platforms are also discussed. Finally,

Section 5 gives conclusions and �nal remarks.

2 Parallel Tridiagonal Algorithms

The PPT, PDD, and Reduced PDD algorithms are introduced in the following four sectons. They

are �rst introduced for solving non-periodic systems and then extended for solving periodic system.

Interested readers may refer [3] and [2] for details of the algorithms, especially for accuracy analysis

and for extending these algorithms for general banded linear systems.

2.1 A Partition Method for Parallel Processing

A tridiagonal system is a linear system of equations

Ax = d; (1)

3

where x = (x1; � � � ; xn)T and d = (d1 � � � ; dn)T are n-dimensional vectors, and A is a tridiagonal

matrix with order n:

A =

2
666666666664

b0 c0

a1 b1 c1

� � �
� � �

an�2 bn�2 cn�2

an�1 bn�1

3
777777777775

= [ai; bi; ci] (2)

To solve Eq. (1) e�ciently on parallel computers, we partition A into submatrices. For conve-

nience we assume that n = p �m, where p is the number of processors available. The matrix A in

Eq. (1) can be written as

A = ~A+�A;

where ~A is a block diagonal matrix with diagonal submatrices Ai(i = 0; � � � ; p�1). The submatrices

Ai(i = 0; � � � ; p � 1) are m � m tridiagonal matrices. Let ei be a column vector with its ith

(0 � i � n� 1) element being one and all the other entries being zero. We have

�A = [amem; cm�1em�1; a2me2m; c2m�1e2m�1; � � � ; c(p�1)m�1e(p�1)m�1]

2
666666666664

eTm�1

eTm

�
�

eT(p�1)m�1

eT(p�1)m

3
777777777775

= V ET ;

where both V and E are n� 2(p� 1) matrices. Thus, we have

A = ~A+ V ET :

Based on the matrix modi�cation formula originally de�ned by Sherman and Morrison [8] for

rank-one changes, and assuming that all Ai's are invertible, Eq. (1) can be solved by

x = A�1d = (~A+ V ET)�1d (3)

x = ~A�1d� ~A�1V (I +ET ~A�1V)�1ET ~A�1d: (4)

Let

~A~x = d (5)

4

~AY = V (6)

h = ET ~x (7)

Z = I +ETY (8)

Zy = h (9)

�x = Y y: (10)

Equation (4) becomes

x = ~x��x: (11)

In Eqs. (5) and (6), ~x and Y are solved by the LU decomposition method. By the structure of

~A and V , this is equivalent to solving

Ai[~x
(i); v(i); w(i)] = [d(i); aime0; c(i+1)m�1em�1]; (12)

i = 0; � � � ; p�1. Here ~x(i) and d(i) are the ith block of ~x and d, respectively, and v(i); w(i) are possible

nonzero column vectors of the ith row block of Y . Equation (12) implies that we only need to solve

three linear systems of order m with the same LU decomposition for each i (i = 0; � � � ; p� 1).

Solving Eq. (9) is the major computation involved in the conquer part of our algorithms.

Di�erent approaches have been proposed for solving Eq.(9), which results in di�erent algorithms

for solving tridiagonal systems [3].

Note that I is an identity matrix. I + ET ~A�1V and Z are pentadiagonal matrices of order

2(p� 1). We introduce a permutation matrix P such that

P z = (z1; z0; z3; z2; :::; z2p�3; z2(p�2))
T for all z 2 R2(p�1)

Eq. 4 then becomes

x = ~A�1d� ~A�1V P (P +ET ~A�1V P)�1ET ~A�1d: (13)

The intermediate matrix Z 0 = P +ET ~A�1V P , then, is a tridiagonal matrix of order 2(p� 1). The

modi�ed solving sequence become:

~A~x = d (14)

~AY = V P (15)

h = ET ~x (16)

Z 0 = P +ETY (17)

Z 0y = h (18)

5

�x = Y y: (19)

where equations 15 and 17 are modi�ed to include permutations. Theses permutations make the

intermediate matrix Z a tridiagonal system and lead to a reduced computation cost.

2.2 The Parallel Partition LU (PPT) Algorithm

Based on the matrix partitioning technique described previously, using p processors, the PPT

algorithm to solve (1) consists of the following steps:

Step 1. Allocate Ai; d
(i), and elements aim; c(i+1)m�1 to the ith node, where 0 � i � p� 1.

Step 2. Solve (12). All computations can be executed in parallel on p processors.

Step 3. Send ~x
(i)
0 ; ~x

(i)
m�1; v

(i)
m�1; v

(i)
0 ; w

(i)
m�1; w

(i)
0 to all the other nodes from the ith node to form

the matrix Z 0 and vector h (see Eq.s (7) and (8)) on each node. Here and throughout the

subindex indicates the component of the vector.

Step 4. Use the LU decomposition method to solve Z 0y = h (see Eq. (9)) on all nodes simultane-

ously. Note that Z 0 is a 2(p� 1) dimensional tridiagonal matrix.

Step 5. Compute (19) and (11). We have

�x(i) = [v(i); w(i)]

0
@ y(2i�1)

y2i

1
A

x(i) = ~x(i) ��x(i)

Step 3 requires a global total-data-exchange (all-to-all broadcast) communication1.

2.3 The Parallel Diagonal Dominant (PDD) Algorithm

The matrix Z in Eq. (9) has the form

1 The total-data-exchange communication can be replaced by one data-gathering communication plus one data-
scattering communication. However, on most communication topologies (include 2-D mesh, multi-stage Omega
network, and hypercube), the latter has a higher communication cost than the former [9].

6

Z =

2
666666666666666664

1 w
(0)
m�1 0

v10 1 0 w
(1)
0

v
(1)
m�1 0 1 w

(1)
m�1 0

� � � � �
� � � � �

� � 1 0 w
(p�2)
0

v
(p�2)
m�1 0 1 w

(p�2)
m�1

0 v
(p�1)
0 1

3
777777777777777775

In practice, for a diagonally dominant tridiagonal system, the magnitude of the last component

of v(i), v
(i)
m�1, and the �rst component of w(i), w

(i)
0 , may be smaller than machine accuracy when

p << n. In this case, w
(i)
0 and v

(i)
m�1 can be dropped, and Z becomes a diagonal block system

consisting of (p � 1) 2 � 2 independent blocks. Thus, Eq.(9) can be solved e�ciently on parallel

computers, which leads to the highly e�cient parallel diagonal dominant (PDD) algorithm.

Using p processors, the PDD algorithm consists of the following steps:

Step 1. Allocate Ai; d
(i), and elements aim; c(i+1)m�1 to the ith node, where 0 � i � p� 1.

Step 2. Solve (12). All computations can be executed in parallel on p processors.

Step 3. Send ~x
(i)
0 ; v

(i)
0 from the ith node to the (i� 1)th node, for i = 1; � � � ; p� 1.

Step 4. Solve 2
4 1 w

(i)
m�1

v
(i+1)
0 1

3
5
0
@ y2i

y2i+1

1
A =

0
@ ~x

(i)
m�1

~x
(i+1)
0

1
A

in parallel on the ith node for 0 � i � p� 2. Then send y2i from the ith node to the (i+1)th

node, for i = 0; � � � ; p� 2.

Step 5. Compute (10) and (11). We have

�x(i) = [v(i); w(i)]

0
@ y(2i�1)

y2i

1
A

x(i) = ~x(i) ��x(i)

In all of these, one has only two neighboring communications.

7

2.4 The Reduced PDD Algorithm

The PDD algorithm is very e�cient in communication. However, the PDD algorithm has a larger

computation count than the conventional sequential algorithm, Thomas algorithm [10]. The Re-

duced PDD algorithm is proposed in order to further enhance computation [2].

In the last step, Step 5, of the PDD algorithm, the �nal solution, x, is computed by combining

the intermediate results concurrently on each processor,

x(k) = ~x(k) � y(2k�1)v
(k) � y2kw

(k);

which requires 4(n � 1) sequential operations and 4m parallel operations, if p = n=m processors

are used. The PDD algorithm drops o� the �rst element of w;w0, and the last element of v, vm�1,

in solving Eq. (9). In [2], we have shown that, for symmetric Toeplitz tridiagonal systems, when

m is large enough, we may drop o� vi; i = j; j + 1; � � � ;m � 1, and wi; i = 0; 1; � � � ; j � 1, for some

integer j > 0, while maintaining the required accuracy. If we replace vi by ~vi, where ~vi = vi, for

i = 0; 1; � � � ; j�1, ~vi = 0, for i = j; � � � ;m�1; and replace w by ~w, where ~wi = wi for i = j; � � � ;m�1,
and ~wi = 0, for i = 0; 1; � � � ; j � 1; and use ~v; ~w in Step 5, we have

Step 5'

�x(k) = [~v; ~w]

0
@ y(2k�1)

y2k

1
A

x(k) = ~x(k) ��x(k): (20)

It only requires 4j=p parallel operations. Replacing Step 5 of the PDD algorithm by Step 5', we get

the Reduced PDD algorithm [2]. In general, j is quite small. For instance, when error tolerance �

equals 10�4, j equals either 10 or 7 when �, the magnitude of the o� diagonal elements equals 1
3 or

1
4 respectively, the diagonal elements being equal to 1. The integer j reduces to 4 for 0 < � � 1

9 .

In general how to determine the value of j is a state-of-art. For symmetric Toeplitz tridiagonal

systems, however, a formula is derived in [2] to determine the truncation number j automaticly

based on the diagonal dominance of the matrix and the desired accuracy. Interested readers may

refer [2] for accuracy analysis of the PDD and reduced PDD algorithm.

2.5 Periodic Tridiagonal Systems

Many PDE's arising in real applications have periodic boundary conditions. For instance, to study

a physical phenomenon in an in�nite region, we often model only a small subdomain, applying

periodic boundary conditions on the boundary. The resulting linear systems have the form of

8

A =

2
66666666664

b0 c0 a0
a1 b1 c1

� � �
� � �

� � �
an�2 bn�2 cn�2

cn�1 an�1 bn�1

3
77777777775

;

and are called periodic tridiagonal systems. On sequential machines, periodic tridiagonal systems

are solved by combining the solutions of two di�erent right-hand-sides [11], which increases the

operation count from 8n� 7 to 14n� 16.

The partition method introduced in Section 2.1 can be extended to periodic tridiagonal systems.

The di�erence is that, for periodic systems, the matrix Z becomes a periodic system of order 2p:

Z =

2
66666666666666666664

1 0 w
(0)
0 0 v

(0)
0

0 1 w
(0)
m�1 0 v

(0)
m�1

0 v10 1 0 w
(1)
0

v
(1)
m�1 0 1 w

(1)
m�1 0

� � � � �
� � � � �

� � 1 0 w
(p�2)
0

v
(p�2)
m�1 0 1 w

(p�2)
m�1 0

w
(p�1)
0 0 v

(p�1)
0 1 0

w
(p�1)
m�1 0 v

(p�1)
m�1 0 1

3
77777777777777777775

The dimension of Z is slightly higher than in the non-periodic case. It changes from 2(p � 1)

to 2p. When p << n, the in
uence of the order increase is negligible. In fact, periodic systems

simply make the load on the 0th and (p-1)th processor identical to the load on all of the other

processors, in Step 2 and in Step 5 of the parallel algorithms. For the PPT algorithm, Step 3, the

communication step, remains the same (v
(0)
0 ; v

(0)
m�1; w

(p�1)
0 ; w

(p�1)
m�1 are equal zero in solving non-

periodic systems), Step 4 has a minor operation count increase. For diagonally dominant, periodic

systems, the reduced system Z is also periodic.

Z =

2
666666666666664

1 0 v
(0)
0

0 1 w
(0)
(m�1)

v
(1)
0 1 0

0 1 �
� � �
� � w

(p�2)
m�1

v
(p�1)
0 1 0

w
(p�1)
m�1 0 1

3
777777777777775

9

The parallel computation time remains the same for the PDD and the Reduced PDD algorithm.

The only change is in communication. For periodic systems, the communication at Step 3 changes

from one dimensional array communication to ring communication. The communication time is also

unchanged for any architecture supporting ring communication. Figure 1 shows the communication

pattern of the PDD and Reduced PDD algorithm for periodic systems.

Figure 1. Communication Pattern for Solving Periodic Systems.

3 Operation Comparison

Table 1 gives the computation and communication count of the tridiagonal solvers under considera-

tion for solving non-periodic systems. Tridiagonal systems arising in many applications are multiple

right-hand-side (RHS) systems. They are usually \kernels" in much larger codes. The computation

and communication counts for solving multiple RHS systems are listed in Table 1, in which the

factorization of matrix ~A and computation of Y are not considered (see Eq.(5) and (6) in Section 2).

Parameter n1 is the number of RHS. Note that for multiple RHS systems, the communication cost

increases with the number of RHS. For the PPT algorithm, the communication cost also increase

with the ensemble size. The computational saving of the Reduced PDD algorithm is not only in

step 5, the �nal modi�cation step, but also in other steps. Since we only need j elements of vector

v and w for the �nal modi�cation in the Reduced PDD algorithm (see Eq. (20) in Section 3), we

only need to compute j elements for each column of V in solving Eq. (6). Formulas for computing

the integer j for particular circumstances can be found in [2]. The best sequential algorithm is the

conventional Thomas algorithm [11], the LU decomposition method for tridiagonal systems.

Communication cost has a great impact on overall performance. For most distributed-memory

computers, communicate time with nearest neighbors is found to vary linearly with problem size.

Let S be the number of bytes to be transferred. Then the transfer time to communicate with a

neighbor can be expressed as � + S�, where � is a �xed startup time and � is the incremental

transmission time per byte. Assuming 4 bytes are used for each real number, Steps 3 and 4 of the

PDD and Reduced PDD algorithm take � + 8� and � + 4� time respectively on any architecture

10

System Algorithm Computation Communication

best sequential 8n� 7 0
Single the PPT 17n

p
+ 16p� 23 (2� + 8p�)(

p
p� 1)

system the PDD 17n
p
� 4 2�+ 12�

the Reduced PDD 11n
p
+ 6j � 4 2�+ 12�

best sequential (5n� 3) � n1 0
Multiple the PPT (9n

p
+ 10p� 11) � n1 (2�+ 8p � n1 � �)(pp� 1)

right sides the PDD (9n
p
+ 1) � n1 (2�+ 8n1 � �)

the Reduce PDD (5n
p
+ 4j + 1) � n1 (2�+ 8n1 � �)

Table 1. Comparison of Computation and Communication (Non-Periodic)

which supports single array topology. The communication cost of the total-data-exchange commu-

nication is highly architecture dependent. The listed communication cost of the PPT algorithm, in

Table 1, 2, and 3, is based on a square 2-D torus with p processors (i.e. 2-D mesh, wrap-around,

square) [12]. With a hypercube or multi-stage Omega network connection, the communication cost

would be log(p)� + 12(p � 1)� and log(p)� + 8(p � 1)n1 � � for single systems and systems with

multiple RHS respectively [3, 13].

If boundary conditions are periodic, tridiagonal systems arising in scienti�c applications are

periodic tridiagonal systems. Computation and communication counts for solving periodic systems

are listed in Table 2. The conventional sequential algorithm used is the periodic Thomas algorithm

[11]. Compared with Table 1, we can see, while the best sequential algorithm has a increased

operation count, the parallel algorithms have the same operation and communication count for both

periodic and non-periodic systems, except for the PPT algorithm which has a slightly increased

operation count. However, for the PDD and Reduced PDD algorithm, the communication is given

for any architecture which supports Ring communication, instead of 1-D array. Notice that when

j < n=2, the Reduced PDD algorithm has a smaller operation count than that of Thomas algorithm

for periodic systems with multiple RHS.

The computation counts given in Table 1 and 2 are for general tridiagonal systems. For symmet-

ric Toeplitz tridiagonal systems, a fast method proposed by Malcolm and Palmer [14] has a smaller

computation count than Thomas algorithm for systems with single RHS. It only requires 5n+2k�3
counts for arithmetic, where k is a decay parameter depending on the diagonal dominancy of the

system. Formulas are available to compute the upper and the lower bounds of parameter k [14]. The

computational savings of Malcolm and Palmer's method is in the LU decomposition. For systems

with multiple RHS, in which the factorization cost is not considered, the Malcolm and Palmer's

method and Thomas method have the same computation count. Table 3 gives the computation

and communication counts of the PDD and the Reduced PDD algorithms based on Malcolm and

11

System Algorithm Computation Communication

best sequential 14n� 16 0
Single the PPT 17n

p
+ 16p� 7 (2� + 8p�)(

p
p� 1)

system the PDD 17n
p
� 4 2�+ 12�

the Reduced PDD 11n
p
+ 6j � 4 2�+ 12�

best sequential (7n� 1) � n1 0
Multiple the PPT (9n

p
+ 10p� 3) � n1 (2�+ 8p � n1 � �)(pp� 1)

right sides the PDD (9n
p
+ 1) � n1 (2�+ 8n1 � �)

the Reduce PDD (5n
p
+ 4j + 1) � n1 (2�+ 8n1 � �)

Table 2. Comparison of Computation and Communication (Periodic)

Best Parallel Algorithm
Algorithm Matrix sequential Computation Communication

PDD Non-periodic 5n+ 2k � 3 14n
p
+ 2k 2�+ 12�

Algorithm Periodic 11n+ 2k � 12 14n
p
+ 2k 2�+ 12�

Reduced Non-periodic 5n+ 2k � 3 8n
p
+ 2k + 6j 2�+ 8�

PDD Alg. Periodic 11n+ 2k � 12 8n
p
+ 2k + 6j 2�+ 8�

PPT Non-periodic 5n+ 2k � 3 14n
p
+ 2k + 16p� 19 (2�+ 8p�)(

p
p� 1)

Algorithm Periodic 11n+ 2k � 12 (14n
p
+ 2k + 16p� 3) (2�+ 8p�)(

p
p� 1)

Table 3. Computation and Communication Counts for Symmetric Toeplitz Systems

Palmer's algorithm. The computation counts of the two algorithms are reduced by the fast method

for solving the sub-systems. Table 3 presents computation and communication counts for solving

systems with a single RHS only. For systems with multiple RHS, the computation counts remain

the same as in Table 1 and 2 for all the periodic and non-periodic systems.

4 Experimental Results

The PDD and the Reduced PDD algorithms were implemented on the 48-node IBM SP2 and

72-node Intel Paragon available at NASA Langley Research Center. Both the SP2 and Paragon

machines are distributed-memory parallel computers which adopt message-passing communication

paradigms and support virtual memory. Each processor (node) of the SP2 is either functionally

equivalent to a RISC System/6000 desktop system (thin node) or a RISC System/6000 deskside

system (wide node). The Paragon XP/S supercomputer uses the i860 XP microprocessor which

includes a RISC integer core processing unit and three separate on-chip caches for page translation,

data, and instructions. The Langley SP2 has 48 wide nodes with 128 Mbytes local memory and peak

performance of 266 MFLOPS each. In contrast, the Langley Paragon has 72 nodes with 32 Mbytes

12

of local memory and peak performance of 75 MFLOPS each. The heart of all distributed memory

parallel computers is the interconnection network that links the processors together. The SP2 High-

Performance Switch is a multi-stage packet switched Omega network that provides a minimum of

four paths between any pair of nodes in the system. The processors of Intel Paragon are connected

in a two-dimensional rectangular mesh topology. The diameter of the 2-D mesh topology will

increase with the number of processors. For the SP2, the measured latency (start time), �, is 45

microseconds and the measured transmission time per byte, �, is 2 micorseconds. For Paragon,

the measured latency and transmission time per byte is 50 microseconds and 6 microseconds,

respectively.

As an illustration of the algorithm and analytical results given by previous sections, a sample

matrix is tested. This sample matrix is a diagonal dominant, symmetric, Toeplitz system

A =

2
666666666666664

1 1
3

1
3 1 1

3

� � �
� � �
� � �

1
3 1 1

3
1
3 1

3
777777777777775

or A =

2
666666666666664

1 1
3

1
3

1
3 1 1

3

� � �
� � �
� � �

1
3 1 1

3
1
3

1
3 1

3
777777777777775

for non-periodic and periodic system respectively. j = 17 has be chosen for the Reduced PDD

algorithm to reach the single precision accuracy, 10�7.

Speedup is one of the most frequently used performance metrics in parallel processing. It is

de�ned as sequential execution time over parallel execution time. Parallel algorithms often exploit

parallelism by sacri�cing mathematical e�ciency. To measure the true parallel processing gain, the

sequential execution time should be based on a commonly used sequential algorithm. To distinguish

it from other interpretations of speedup, the speedup measured versus a commonly used sequential

algorithm has been called absolute speedup [15]. Another widely used interpretation is the relative

speedup [15], which uses the uniprocessor execution time of the parallel algorithm as the sequential

time. Relative speedup measures the performance variation of an algorithm with the number of

processors, which is commonly used in scalability studies. Both Amdahl's law [16] and Gustafson's

scaled speedup [17] are based on relative speedup. In this study we �rst use relative speedup to

study the performance of the PDD and Reduced PDD algorithm, then, the absolute speedup is

used to compare these two algorithms with the conventionally used sequential algorithm.

Since execution time varies with communication/computation ratio on a parallel machine, the

problem size is an important factor in performance evaluation, especially for machines supporting

virtual memory. Virtual address space separates the user logical memory from physical memory.

13

This separation allows an extremely large virtual memory to be provided (with a much slower

memory access time) on a sequential machine when only a small physical memory is available.

If the problem size is larger than physical memory, data has to be swapped in from and out

to secondary memory, which may lead to ine�cient sequential processing and unreasonably high

speedup. If the problem size is too small, on the other hand, when the number of processors

increases, the work load on each processors will drop quickly, which may lead to extremely high

communication/computation ratio and unacceptably low performance. As studied in [15], the

right choice of initial problem size is the problem size which reaches an appropriate portion of the

asymptotic speed, the sustained uniprocessor speed corresponding to the main memory access [15].

The nodes of SP2 and Paragon have di�erent processing powers and local memory sizes. For a

�xed 1024 RHS, following the asymptotic speed concept, the order of matrix for SP2 has been

chosen to be 6400 and the order of matrix for Paragon has been chosen to be 1600. Figures 2 and

3 show the measured speedup of the PDD algorithm solving the sample periodic system when the

large problem size, n = 6400, is solved on Paragon and the small problem size, n = 1600, is solved

on SP2. For comparison, ideal speedup, where speedup equals p when p processors available, is

also plotted with the measured speedups. As indicated above, the large problem size leads to an

unreasonable superlinear speedup on Paragon and the small problem size leads to a disappointing

low performance on SP2.

From the problem size point of view, speedup can be divided into the �xed-size speedup and the

scaled speedup. Fixed-size speedup �xes the problem size. Scaled-speedup scales the problem size

with the number of processors. Fixed-size speedup emphasizes how much execution time can be

reduced for a given application with parallel processing. Amdahl's law [16] is based on the �xed-

size speedup. The scaled speedup is concentrated on exploring the computational power of parallel

computers for solving otherwise intractable large problems. Depending on the scaling restrictions

of the problem size, the scaled speedup can be classi�ed as the �xed-time speedup [17] and the

memory-bounded speedup [18]. As the number of processors increases, memory-bounded speedup

scales problem size to utilize the associated memory increase. In general, operation count increases

much faster than memory requirement. Therefore, in general, the work load on each processor will

not decrease with the increase in number of processors in memory-bounded scaleup. Thus, scaled

speedup is more likely to get a higher speedup than that of �xed-size speedup. Figures 4 and 5

depict the speedup of the �xed-size and memory-bounded speedup of the PDD and the Reduced

PDD algorithm for solving the periodic system, respectively, on the Intel Paragon. From Figs. 4

and 5 we can see that the PDD and the Reduced PDD algorithm have the same speedup pattern.

This similarity is very reasonable because these two algorithms share the same computation and

communication pattern. It has been proven that the PDD algorithm, and therefore the Reduced

PDD algorithm, are perfectly scalable (under the assumption that the number of right-hand-sides

is �xed and the order of matrix increases with the number of processors), in terms of isospeed

14

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

Speedup

Number of Processors

Ideal Speedup
Fixed-Size Speedup

Figure 2. Superlinear Speedup with Large Problem Size on Intel Paragon
1024 System of Order 6400, periodic

15

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Speedup

Number of Processors

Ideal Speedup
Fixed-Size Speedup

Figure 3. Ine�cient Performance with Small Problem Size on SP2
1024 System of Order 1600, periodic

scalability [2], on any architecture which supports ring communication network. However, ring

communication cannot be embedded in 2-D mesh topologies perfectly, unless a wrap-around is

supported. Thus, the communication cost of the algorithms increases slightly with the increase

of the number of processors. The fact that the memory-bounded speedups on the Paragon are

slightly below the ideal speedup is very reasonable. The in
uence of the communication cost has

been re
ected in the measured speedup. Figure 6 demonstrates the speedups of the PDD algorithm

on the SP2 machine. Since the cost of one-to-one communication does not increase with the number

of processors on the SP2 multi-stage Omega network, for number of processors from 2 to 32, the

PDD algorithm reaches a linear speedup on memory-bounded speedup. The measured speedup is

below ideal speedup because there is no communication in uniprocessor processing. In accordance

with the isospeed metric [19], the PDD algorithm is perfectly scalable in the multi-stage SP2

machine from ensemble size 2 to 32.

Though the PDD and the Reduced PDD have similar relative speedup patterns, the execution

times of the two algorithms are very di�erent. The Reduced PDD algorithm has a smaller execution

time than that of the PDD algorithm. For periodic systems, as the sample matrix, the Reduced

PDD algorithm even has a smaller execution time than the conventional sequential algorithm. The

timing of Thomas algorithm, the PDD algorithm, and the Reduced PDD algorithm on single node

of the SP2 and Paragon machine are listed in Table 4. The problem size for all algorithms on SP2

is n = 6400 and n1 = 1024, on Paragon is n = 1600 and n1 = 1024. The measured results con�rm

the analytical results given in Table 1 and 2.

16

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Speedup

Number of Processors

Ideal Speedup
Memory-Bounded Speedup

Fixed-Size Speedup �

��
� �

� �

Figure 4. Measured Speedup of the PDD Algorithm on Intel Paragon
1024 System of Order 1600, periodic

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Speedup

Number of Processors

Ideal Speedup
Memory-Bounded Speedup

Fixed-Size Speedup �

��
� � � �

Figure 5. Measured Speedup of the Reduced PDD Algorithm on Intel Paragon
1024 System of Order 1600, periodic

17

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Speedup

Number of Processors

Ideal Speedup
Memory-Bounded Speedup

Fixed-Size Speedup �

��
�

�

�

�

Figure 6. Measured Speedup of the PDD Algorithm on a SP2 Machine
1024 System of Order 6400, periodic

Size Thomas Alg. PDD Alg. Reduced PDD Alg.

Paragon 1600 0.8265 0.9026 0.6432
SP2 6400 0.7387 0.856 0.5545

Table 4. Sequential Timing (in seconds) on Paragon and SP2 machines

18

Figures 7 and 8 show the speedup of the PDD and Reduced PDD algorithm over the conventional

sequential algorithm, Thomas algorithm, respectively. The PDD algorithm increases computation

count for high parallelism. The Reduced PDD reduces computation count by taking advantage

of diagonal dominance. Compared to Thomas algorithm, while the absolute speedup of the PDD

algorithm is worse than its relative speedup, the Reduced PDD algorithm has a better absolute

speedup than its relative speedup. The Reduced PDD algorithm achieves a superlinear speedup over

Thomas algorithm. Experimental results con�rm that the Reduced PDD algorithm maintains the

good scalability of the PDD algorithm and delivers an e�cient performance in terms of execution

time as well.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Speedup

Number of Processors

Ideal Speedup
Memory-Bounded Speedup

Fixed-Size Speedup �

��
� � � �

Figure 7. Speedup of the PDD Algorithm Over Thomas Algorithm.
1024 Systems of Order 1600, periodic

Non-periodic systems have also been tested on the Paragon and SP2 machines. As shown in

Tables 1 and 2, both the PDD and Reduced PDD algorithm have the same parallel operation count

for solving periodic and non-periodic systems. The only di�erence is that for periodic systems ring

communication is required whereas for non-periodic systems 1-D array communication is required.

Figure 9 depicts the memory-bounded speedup of the PDD algorithm for solving periodic and non-

periodic systems on the Paragon machine. Observing the speedup curves, we can see that speedup

is a little higher for non-periodic system than for periodic system. The di�erence in speedup is

due to the nature of the architecture of the Paragon machine: 1-D array can be embedded onto

2-D mesh while ring cannot. The memory-bound speedup of the Reduced PDD algorithm on the

SP2 machine is shown in Fig. 10. On a multi-stage Omega network, each processor has a equal

access time to all the remote memories. The communication costs for ring communication and 1-D

19

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Speedup

Number of Processors

Ideal Speedup
Memory-Bounded Speedup

Fixed-Size Speedup �

��
�

�
� �

Figure 8. Speedup of the Reduced PDD Algorithm Over Thomas Algorithm.
1024 Systems of Order 1600, periodic

array communication are the same on Omega network. The speedup variation of the Reduced PDD

algorithm for solving periodic and non-periodic systems on the SP2 machine is negligible.

The PDD and the Reduced PDD algorithms are perfectly scalable, in the sense that their

communication cost does not increase with the order of matrix and ensemble size, and the workload

is balanced. The PPT algorithm, however, has a serial processing part and a communication cost

which increase with the ensemble size. While the PDD and the Reduced PDD algorithms have

similar speedup curves on both the Paragon and the SP2 machines, the PPT has quite di�erent

speedup curves on the Paragon and the SP2 machines. Figure 11 shows the scaled and the �xed-size

speedup of the PPT algorithm on the SP2 machine. The measured speedup is considerably lower

than that of the PDD and the Reduced PDD algorithm. Parallel e�ciency is usually de�ned as

speedup divided by the number of processors. Unlike the PDD and the Reduced PDD algorithm,

the e�ciency of the PPT algorithm decays with the ensemble size. The scaled speedup of the

PPT algorithm on the two machines are presented in Fig. 12. From Figs. 11 and 12 we can see

that the PPT algorithm cannot reach linear speedup on either machine. However, its speedup

on SP2 is much higher than on Paragon. The higher speedup is due to the fact that the SP2

has a larger memory, and therefore a better parallel/serial processing ratio2. The higher speedup

can also be attributed to the di�erence of communication complexity of the total-data-exchange

communication on a 2-D mesh and on a Omega network topology. The experimental results show

2Notice that the operation of the serial portion of the PPT algorithm does not increase with the order of matrix.
When the number of RHS is �xed, it only increases with the number of processors

20

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

Speedup

Number of Processors

Ideal Speedup
Periodic Systems

Non-Periodic Systems �

��
�

�

�

�

Figure 9. Scaled Speedup of the PDD Algorithm on Paragon.
1024 Systems of Order 1600, periodic & non-periodic

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Speedup

Number of Processors

Ideal Speedup
Periodic System

Non-Periodic System �

��
�

�

�

�

Figure 10. Scaled Speedup of the Reduced PDD Algorithm on SP2.
1024 Systems of Order 6400, periodic & non-periodic

21

that applications with complicated computation and communication structures are more sensitive

to hardware support.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Speedup

Number of Processors

Ideal Speedup
Memory-Bounded Speedup

Fixed-Size Speedup �

��
� � � �

Figure 11. Speedup of the PPT algorithm on SP2 Machine.
1024 Systems of Order 6400, non-periodic

5 Conclusion

Parallel computers o�er signi�cantly increased computing power for solving scienti�c applications.

However, utilizing the high computing power in solving actual applications is di�cult. E�cient

parallel algorithms have to be designed to maximize the parallelism and to minimize the com-

munication. Communication cost is strictly related to the underlying architecture as well as the

algorithm. Various algorithms have been proposed on various architectures in recent years. The

choice of an algorithm/architecture pair may exhibit a wide range of variations in performance for

a given application. In addition, implementation technique and hardware details, that may not be

considered in theoretical analysis, may in
uence the �nal performance considerably. It is very im-

portant that parallel algorithms are compared not only in terms of operation count but also taking

implementation details and results into account, especially for distributed-memory machines where

communication cost is high.

Tridiagonal systems arise in many scienti�c applications. They are usually \kernels" in larger

codes. Three parallel tridiagonal solvers, the PDD, the Reduced PDD, and the PPT algorithms are

studied in detail in this paper. Comparisons of these three algorithms, in terms of best sequential

algorithms, in terms of execution time, and in terms of speedup are presented. Experimental mea-

22

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Speedup

Number of Processors

Ideal Speedup

SP2
Paragon �

��
�

�
� �

Figure 12. Memory-Bounded Speedup of the PPT algorithm.
1024 Systems, non-periodic

surement and performance evaluations have been conducted on two distributed-memory platforms:

Intel Paragon and IBM SP2. Algorithms for both periodic and non-periodic systems are tested.

In addition to theoretical analysis, implementation considerations are also discussed. The PPT

algorithm is a general tridiagonal solver. It has a serial processing part and requires a all-to-all

communication. Implementation comparison on a Paragon and SP2 machine shows that the per-

formance of the PPT algorithm is very sensitive to hardware support and to problem size. The

sensitivity probably is true for any algorithm with complicated computation and communication

structures. Unlike the PPT algorithm, the PDD and the Reduced PDD algorithms, which have

local communication and load balance, reach similar speedup curves on the Paragon and the SP2

machine. For both the PDD and Reduced PDD algorithms the non-periodic systems yield a little

better performance than the periodic systems on the Paragon.

The PDD and the Reduced PDD algorithm are designed for diagonally dominant tridiagonal

systems. Experimental and theoretical results show that both the PDD and Reduced PDD al-

gorithm are e�cient and scalable, even for systems with multiple right-hand-sides. For periodic

systems, as con�rmed by our implementation results, the Reduced PDD algorithm even has a

smaller sequential execution time than that of the best sequential algorithm, when it is applicable.

The two algorithms are good candidates for parallel computers. The common merit of these two

algorithms is the minimum communication required. This merit makes them even more valuable

in a distributed computing environment, such as the environment of a cluster of a network of

workstations.

23

References

[1] Committee on Physical and Mathematical and Engineering Sciences, \Grand challenges: High
performance computing and communications," National Science Foundation, 1992.

[2] X.-H. Sun, \Application and accuracy of the parallel diagonal dominant algorithm," Parallel

Computing, pp. 1241{1267, Aug. 1995.

[3] X.-H. Sun, H. Zhang, and L. Ni, \E�cient tridiagonal solvers on multicomputers," IEEE

Transactions on Computers, vol. 41, no. 3, pp. 286{296, 1992.

[4] C. Ho and S. Johnsson, \Optimizing tridiagonal solvers for alternating direction methods on
boolean cube multiprocessors," SIAM J. of Sci. and Stat. Computing, vol. 11, no. 3, pp. 563{
592, 1990.

[5] J. Lambiotte and R. Voigt, \The solution of tridiagonal linear systems on the CDC Star-100
computer," ACM Trans. Math. Soft., vol. 1, pp. 308{329, Dec. 1975.

[6] D. Lawrie and A. Sameh, \The computation and communication complexity of a parallel
banded system solver," ACM Trans. Math. Soft., vol. 10, pp. 185{195, June 1984.

[7] H. Wang, \A parallel method for tridiagonal equations," ACM Trans. Math. Software, vol. 7,
pp. 170{183, June 1981.

[8] J. Sherman and W. Morrison, \Adjustment of an inverse matrix corresponding to changes
in the elements of a given column or a given row of the original matrix," Ann. Math. Stat.,
vol. 20, no. 621, 1949.

[9] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability.
McGraw-Hill, 1993.

[10] J. Ortega and R. Voigt, \Solution of partial di�erential equations on vector and parallel com-
puters," SIAM Review, pp. 149{240, June 1985.

[11] C. Hirsch, Numerical Computation of Internal and External Flows. John Wiley & Sons, 1988.

[12] V. Kumar and et al., Introduction to Parallel Computing: Design and Analysis of Algorithms.
Benjamin/Commings, 1994.

[13] V. Bala and et al., \Ccl: A portable and tunable collective communication library for scalable
parallel computers," IEEE Transactions on Parallel and Distributed Systems, vol. 6, pp. 154{
164, Feb. 1995.

[14] M. A. Malcolm and J. Palmer, \A fast method for solving a class of tridiagonal linear systems,"
Communications of the ACM, vol. 17, no. 1, pp. 14{17, 1974.

[15] X.-H. Sun and J. Zhu, \Performance considerations of shared virtual memory machines," IEEE
Transactions on Parallel and Distributed Systems, pp. 1185{1194, Nov. 1995.

[16] G. Amdahl, \Validity of the single-processor approach to achieving large scale computing
capabilities," in Proc. AFIPS Conf., pp. 483{485, 1967.

[17] J. Gustafson, \Reevaluating Amdahl's law," Communications of the ACM, vol. 31, pp. 532{
533, May 1988.

24

[18] X.-H. Sun and L. Ni, \Scalable problems and memory-bounded speedup," J. of Parallel and

Distributed Computing, vol. 19, pp. 27{37, Sept. 1993.

[19] X.-H. Sun and D. Rover, \Scalability of parallel algorithm-machine combinations," IEEE

Transactions on Parallel and Distributed Systems, pp. 599{613, June 1994.

25

